Preview Mode Links will not work in preview mode

Discover CircRes


Dec 16, 2021

This month on Episode 31 of Discover CircRes, host Cynthia St. Hilaire highlights two original research articles featured in the December 3 issue of Circulation Research. This episode also features a conversation with Drs Xavier Revelo, and Jop van Berlo from the University of Minnesota about their study, Cardiac Resident Macrophages Prevent Fibrosis and Stimulate Angiogenesis.

 

Article highlights:

 

Tong, et al. Alternative Mitophagy Protects Obesity Hearts

Soetkamp, et al. Myofilament Phosphorylation in CDC Treated HFpEF

 

Cindy St. Hilaire:        Hi, and welcome to Discover CircRes, the podcast of the American Heart Association's journal, Circulation Research. I'm your host, Dr Cindy St. Hillaire from the Vascular Medicine Institute at the University of Pittsburgh. And today I'll be highlighting two articles presented in our December 3rd issue of CircRes, and I'll also speak with doctors, Xavier Revelo, and Jop van Berlo from University of Minnesota about their study, Cardiac Resident Macrophages Prevent Fibrosis and Stimulate Angiogenesis.

 

Cindy St. Hilaire:        The first article I want to share is titled, Alternative Mitophagy Protects the Heart Against Obesity-Associated Cardiomyopathy. The first doctor is Ming Ming Tong, and the corresponding author is Jun Sadoshima from Rutgers University. People with obesity or diabetes have an increased risk of developing cardiomyopathy, a condition which can eventually lead to heart failure. One of the major pathological features of obesity-related cardiomyopathy at the cellular level is a decrease in mitochondrial function. This decrease in mitochondrial function is likely due to a decrease in the canonical mitophagy pathway, which is a process by which dysfunctional mitochondria are degraded. However, a new process termed alternative mitophagy was recently discovered. When mice were fed a high fat diet for 24 weeks after only eight weeks, canonical mitophagy ceased. However alternative mitophagy steadily increased over the 24 weeks. Alternative mitophagy is regulated via the protein ULK1 and Rab9. The team went on to show that suppressing alternative mitophagy by knocking out ULK1, or expressing a loss of function, Rab9 mutant exacerbated the high fat diet induced cardiac dysfunction. Over expression of Rab9 in mouse hearts increased the alternative mitophagy pathway and protected the animals from cardiac dysfunction. These results suggest that pharmacological boosting of this ULK1 Rab9 mediated alternative mitophagy pathway might be a treatment strategy for preventing obesity related cardiomyopathy.

 

Cindy St. Hilaire:        The second article I want to share is titled Myofilament Phosphorylation in Stem Cell Treated Diastolic Heart Failure. The first doctor is Daniel Soetkamp and the corresponding author is Jenny Van Eyk from Cedar Sinai Medical Center. Weakness, fatigue and troubled breathing are among the symptoms experienced by someone suffering from heart failure with preserved ejection fraction, which is frequently called HFpEF. The pathology of the condition includes hypertrophy, fibrosis and stiffening of the heart and hyperphosphorylation of the cell sarcomere proteins. Because this hyperphosphorylation is a key contributor to HFpEF pathology, and because cardio sphere derived stem cells or CDCs have shown promise as a potential HFpEF treatment, this group investigated whether CDC treatment reduces phosphorylation levels of the sarcomere proteins in the heart. They found that administering CDCs to rats with HFpEF decreased the associated protein hyperphosphorylation, compared with that seen in untreated animals. Bioinformatic analysis revealed that protein kinase C or PKC is a prime suspect behind the phosphorylation. The authors suggest that CDCs alleviate HFpEF in part by reversing PKC-induced phosphorylation, and that PKC inhibition may be a desirable alternative treatment strategy, especially as it avoids regulatory issues associated with cell-based therapies.

 

Cindy St. Hilaire:        Today, I have Dr Xavier Revelo and Dr Jop van Berlo from the University of Minnesota and they're with me to discuss their study, Cardiac Resident Macrophages Prevent Fibrosis and Stimulates Angiogenesis. And this article is in our December 3rd issue of Circ Res. So, thank you both so much for joining me today.

 

Jop van Berlo:             Thanks for having us.

 

Cindy St. Hilaire:        Absolutely. So, your study is investigating the contribution of resident and monocyte drug of macrophages in cardiac remodeling, specifically in hypertrophy remodeling. So can you just introduce the topic of cardiac hypertrophy in humans, why that's not great to have, and then maybe tell us a little bit about what is known or what was known about the role of inflammatory cells in that hypertrophic remodeling.

 

Jop van Berlo:             Yeah, so absolutely. Cardiac hypertrophy is not a disease in and of itself in humans, but it is often a consequence of pathologies that can happen in patients, such as high blood pressure, hypertension or aortic valve stenosis, or if you've had a myocardial infarction the remaining myocardial may also become hypertrophic. We know that cardiac hypertrophy has downsides to it. People can develop sudden cardiac death when they have hypertrophic heart disease. We notice from population studies like the Framingham Heart Study and other studies, but it also increases the chance of developing heart failure later on. So even though cardiac hypertrophy by itself is not a disease, it is contributing to the cardiac pathology that can develop in patients and that can contribute to the development of heart failure.

 

Cindy St. Hilaire:        Great. So, what's the base level of knowledge of what is known regarding inflammatory cells in cardiac hypertrophy or cardiac hypertrophic remodeling?

 

Xavier Revelo:             So previous forecast focused on the role of infiltrating cells, specifically monocyte-derived macrophages, and generally these cells are pro-inflammatory and they aggravate the progression of heart failure. With Jop, we focus on, and what we think is exciting is the role of cardiac resident macrophages. And so, in our experiments, we decided to look at what's the role of these cardiac meta macrophages during pressure overload.

 

Cindy St. Hilaire:        That's a perfect segue to my next question, which is you obviously modeled this in mice, you used mice as your model and the method that you used to induce this hypertrophy is a technique called Transverse Aortic Constriction. So how does that actually work in a mouse and are there certain pros and cons to using that as a model for cardiac hypertrophy and, does it really recapitulate well, what happens in humans?

 

Jop van Berlo:             So, you're absolutely right that we use model systems to mimic what happens in humans and every model system has pros and cons to it. What we're trying to do here is to induce essentially acute cardiac pressure overload in a mouse model by inducing a constriction of the transverse aorta, right between the anomia and the left carotid artery. And we do this by ligating a needle on top of the transverse aorta that is of a specific size. And then we pull the needle out of the ligation and that immediately induces constriction. This is known to induce cardiac hypertrophy, and there are thousands of papers about this model as a model to induce cardiac hypertrophy. I think Howard Rockman was the first to publish this as a model of cardiac hypertrophy. Over the past decades, most of the research has focused on how cardiomyocytes within the heart respond to their stress and how they become hypertrophic. And I think what is new about our study is that instead of really focusing on the cardiomyocyte, we are focusing more on the non-cardiomyocyte compartments early after this stress is induced on the heart.

 

Cindy St. Hilaire:        That was one of the things I liked about this paper. We read about TAC a lot, the transaortic constriction model, but a lot of it is looking at either just the fibrotic cells or the scarring or the cardiomyocytes. So, this was, I thought a really nice unique take. So, one of the things I'm wondering is what are the functional differences between the systemic macrophages and these resident macrophages? I guess, resident to the cardiac tissue. And how does one tell the difference between these cells in the mice, but also in the humans? What is the human equivalent of those cells?

 

Xavier Revelo:             So, these cells, they rest in the macrophages in the cardiac tissue. One of the key differences from circulatory cells is the origin of the cells. In the heart, these cells self-renew, and they are from embryonic origins, as opposed to circulatory immune cells that come from the bone marrow. In terms of similarities between mice and humans, there are some markers that we can use to specifically study the cardiac resident macrophages. And these markers fortunately seem to be consistent between people and mice, which is advantages.

 

Cindy St. Hilaire:        That is good. That's always nice when it works out that way. So, you, you actually answered my next question, which was, are these residents macrophages a) able to self-replicate or are they from their own source? And so, regarding that developmental origin, how far apart are these lineages of the circulating monocytes versus the resident or the cardiac resident? How similar and how different, and how far back on the tree do they diverge? If we know it?

 

Xavier Revelo:             It's a complicated question.

 

Jop van Berlo:             And it's an active area of study right now, not just by us, but also by many other groups.

 

Xavier Revelo:             So, what we know is that regardless of origin, the cells are myeloid cells. So, they're the same lineage within the big family of immune cells. Having said that, the function of the cells is dictated by the origin, as well as the issue of residency. I forgot a second part of your question.

Cindy St. Hilaire:        I'm wondering how much they diverge functionally from the circulating monocytes?

 

Xavier Revelo:             They do. It seems like the tissue factors and the residency dictates the function of the cells in general. This is a general comment. Resident cells seem to have a protective role. Sometimes they help with the repair and healing as opposed to infiltrating cells that come into the tissue and they cause inflammation, generally they aggravate disease progression.

 

Jop van Berlo:             But what I also find fascinating about these resident macrophages is they are not only found in the heart, but they’re also found in all organs, and they all come from developmental origins. But if you compare the macrophages between these different organs, they resemble the organ itself more than macrophages between organs and that's based on recent work where people have compared resident macrophages from different organs. And I think that's just fascinating how this develops in the heart, but also in other organs as a way to protect specific organs from potentially dangerous signals.

 

Cindy St. Hilaire:        Yeah, that's so interesting. So, it's almost like their niche, their new residential home, is really informing their function. So, there's some kind of back and forth between that environment and the cell itself.

 

Jop van Berlo:             That's what we presume, but I don't think we truly understand how the niche is important in dictating the function of these resident macrophages. And I think we need to do a lot more research into how the niche of tissue resident macrophages has formed and how that then dictates the differentiation of these resident macrophages to give rise to certain functionalities.

 

Cindy St. Hilaire:        Maybe you can summarize in a couple short sentences or so what, what your key findings were.

 

Jop van Berlo:             The main findings of our study is that very early after the induction of acute cardiac pressure overload, there is a high level of inflammation happening in the heart. And this allows the replication of resident macrophages and our study showed that these resident macrophages are really important for a protective mechanism within the heart to allow the heart to deal with this increased pressure in a heart. And what they do is they stimulate the formation of new block vessels, also known as angiogenesis and furthermore, they inhibit the formation of scar tissue or fibrosis, and we used different ways to substantiate these conclusions.

 

Xavier Revelo:             We studied cardiac-resident macrophages as one population. But one thing we learned in this study is that these macrophages are highly diverse. And so, using our techniques, we discover that within cardiac macrophages, we have 11 different subsets. And so, our future studies will be aiming at understanding the precise role of these different subsets that we think have different roles in pressure overload.

 

Cindy St. Hilaire:        One of the things I was thinking about is these 11 subsets, do they represent kind of end stage fully differentiated resident macrophages, meaning 11 different types, or are they kind of representing maybe the different stages that get to the one end type? Do we have a sense of what's going on?

 

Xavier Revelo:             I don't think it's completely understood my take on that is that these different subsets they can represent different activation states or functional subsets that we don't really understand why is that we have this diversity?

 

Jop van Berlo:             I think one of the aspects that we as a field need to work on is to better understand that complexity of immune cells that reside within an organ and associate that complexity to specific functionalities. And right now, the field is mostly lacking in technologies that allow us to do this. For example, we cannot culture these resident macrophages right now. We don't know the proper culturing conditions that allow us to test functional differences between subsets of macrophages. We don't have very good genetic tools to dissect these specific subsets of macrophages. And I think those are important areas that the field and us of course need to work on in the coming years.

 

Cindy St. Hilaire:        Every layer of discovery, just brings like 10 more layers complexity, or 11 more co-layers of complexity in this case.

 

Jop van Berlo:             Which is why we all love science!

 

Cindy St. Hilaire:        Exactly, exactly. It's a drug that, that keeps on giving. So, one of your experiments, I forget which number, I think figure five or six or something like that, but in wild type mice, you went on to use an anti CD115 antibody. And because that treatment others, as well as yourselves has shown depletes the resident macrophages. And, and one thing I thought was really interesting. I just want to hear how you unpack it. And that is in the wild type mice that were treated with the anti CD115 antibody. You found that the depletion of the resident macrophages exacerbated the adverse remodeling and it increased fibrosis, it decreased angiogenesis, but when you did the same thing in a CCR2 knockout mouse in that mouse, they don't have the circulating macrophages, but they also don't have the resident macrophages. They were protected from the increased fibrosis, but there was no change in the angiogenesis. And I was just wondering if you could unpack these results for me and kind of talk about the competing roles of the resident and the non-resident macrophage in this pathogenesis.

 

Jop van Berlo              So I think you highlight a really important experiment that we performed that try to dissect the protective versus damaging effects of different subsets of macrophages within the heart. We know that if you delete the receptor CCR2, that circulating monocytes cannot extravasate and enter the tissue in response to the cytokine CCL2 that is produced by the myocardium. So, using the CCR2 knockout, we essentially blocked the invasion of circulating monocytes into the myocardium to become monocyte-derived macrophages. And we knew from the literature that, especially the monocyte-derived macrophages, were pro fibrotic. So, we wanted to discern the effects on fibrosis between resident macrophages and monocyte derived macrophages. So, we were happy to indeed see that when we blocked extravasation of circulating monocytes and blocked them to become macrophages, that we indeed reduce the amount of fibrosis that we observed within the heart.

 

                                    I think the difficulty here that we observed that we don’t have a very good explanation for right now are the effects on angiogenesis. And I think what this highlights is that there are many, many more complexities than just the resident and recruited macrophages on the development of angiogenesis because when we block tissue resident macrophages, are we actually depleting tissue resident macrophages? We didn’t completely block the development of angiogenesis. We merely inhibited this by a little bit. And so, I think there are many more actions happening within the heart in response to stress than just the immune cells. And I think it highlights how complex a living organ really is. And we always try to do reductionist experiments to try to understand the functioning of specific aspects of that organ, but it’s much more complex than just one cell type doing one thing and another cell type doing another thing.

 

Xavier Revelo:             One potential explanation to this complexity is the fact that when we deplete resident macrophages, the monocyte-derived macrophages, the infiltrating macrophages, they can replenish those resident macrophages. And so, whether there's a difference between the original resident macrophages compared to the replacing macrophages is unknown. And so, all these complexities can perhaps explain that different phenotypes that we observed in terms of angiogenesis.

 

Cindy St. Hilaire:        What do your findings suggest about potential therapies or you even potential therapeutic targets? Is it possible in a human to be able to target one or the other macrophage population? I know a lot of your experiments, because it's an experiment, you're targeting the depletion of macrophages before to see the effects, but are we able to possibly activate or stimulate their production, post MI for example?

 

Xavier Revelo:             Yeah, absolutely. So, thinking about cardiomyocyte independent interventions that can enhance the preparation process of any stressed heart, we could see potential in manipulating resident macrophages, specifically enhancing the functions of these resident macrophages that will help us heal and prevent fibrosis and enhance angiogenesis. So, we think that future studies need to look at what factors can be manipulated to enhance the function and survival of these resident macrophages.

 

Jop van Berlo:             One important aspect of our study that we don't highlight is that after this large increase in tissue resident macrophages, that we observed within the first week after cardiac pressure overload, these cells actually disappear. And right now, we don't really know the signals that are important for mediating that disappearing of cells. And we don't know this whether maintenance of these signals could improve longer beneficial effects of tissue resident macrophages.

 

Cindy St. Hilaire:        Interesting. I guess we know some questions you're going to start to ask in the future.

 

Jop van Berlo:             Absolutely. There's always more questions to answer in science.

 

Cindy St. Hilaire:        Well, great. Well, Dr Revelo, Dr van Berlo. Thank you so much for joining me today. Congrats on a wonderful paper and we look forward to these future studies.

 

Jop van Berlo:             Thank you.

 

Xavier Revelo:             Thank you.

 

Cindy St. Hilaire:        That's it for the highlights from the December 3rd issue of Circulation Research. Thank you for listening. Please check out the CircRes Facebook page and follow us on Twitter and Instagram with the handle at @CircRes and #DiscovererCircRes. Thank you to our guests, Dr Xavier Revelo and Jop van Berlo. This podcast is produced by Ishara Ratnayaka, edited by Melissa Stoner and supported by the editorial team of Circulation Research. Some of the copy text for highlighted articles is provided by Ruth Williams. I'm your host, Dr Cindy St. Hillaire. And this is Discover CircRes, your-on-the-go source for the most exciting discoveries in basic cardiovascular research. This program is copyright of the American Heart Association, 2021. The opinions expressed by speakers in this podcast are their own and not necessarily those of the editors or the American Heart Association for more information visit aha journals.org.